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A DELIVERY-LAG INVENTORY MODEL WITH AN

EMERGENCY PROVISION

By EW.. B&RANKIN
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I. THE SINGLE-PERIOD CASE

1. kInro~ductn nd Reneral discussion. This report

begins the study of gn inventory modelAin which there is a

fixed lag time of one period for delivery of orders, but in

which there is also defined an emergency situation with

respect to initial stock at any particular inventory point-.

wiien such an emergency situation obtains, an additional

order of a specified fixed size is taken with immediate

delivery. _ There is a certain additional cost for this

iunediate delivery (although the analysis may be specialized

to the case of no additional cost).', ;hile the particular

structure of emergency is laid down,there is a free param-

eter left to be chosen for each period to render the defi-

nition of emergency fully specific) and this parameter is

determined as part of the optimization.

There is no attempt bar,* to achieve the fullest

generality in every respect. The principal object is to

investigate the indicated emergency character of the

model. It is anticipated that thu n-period cases, with

n > 1, will yield their essential properties by the device

of inductive argument, -. •4 -. - p 9 nd that from
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these, by suitable limit considerations, the stationary

case may be studied. *_Tha this first investigation

is directed to the case of the single-period problem, so

formulated as to present the features %&ich may be expected

to arise in the general n-period case.

Before we enter into the single- eriod problem, it

will be helpful for orientation to disc.as the general n-

period model, and the attendant racursioA relations.

Consider a time interval of n periods in length,

with the inventory points labelled 1, 2,..., n + I from

left to right, and the periods labelled Is, i = 1, 2,..., n:

I I

-1 0 1 2 3 n n+l
FIG. I

For i = i, 2,..., n, let xi denote what shall be called

the intial stock in Ii, and is defined to be the (positive

or negative) stock level at i inclusive of any orders that

have been placed at inventory points t < i and which arrive

at i, but not inclusive of an order which is placed at i

and is immediately delivered. For purposes of deriving

the recursion relation, it is necessary to consider the

n-period int3rval in the context of a larger interval (as

indicated in FIG. I, with inventory points 0, -1,...); thus,

the initial stock x, takes account of orders at t = 1 which

were placed at previous inventory points.



Now in fact, we consider that an order arrives at an

inventory point only on either inmmdiate delivery or

delivery of one period lag. In more detail: at a point

i, ordering is done according to the following scheme.

There is a number 7n~i+1 such that (i) if xi > 7n'i+,

then an order for zi units (the quantity zi to be deter-

mined by optimization) is played for del!vcry at i + 1,

one period later, whereas (ii) if xi =< -n_i+l, t.en in

addition to an order for zi (= the optimal orJ:et n.-x) ualts

to be delivered at i + 1, an order for m units is placed

and these m units will be immediately delivered. The

qua•,iity m is fixed, the same for all pcriods. The

numbers ^j are to be chosen in an optimal way.

The sense of this ordering scheme is clear. We are

tae!ing the simplest kind of characterization of an

emergency situation; namely, when the initial stock is

below a prescribed level (the number yj). And In this

situation me are considering that the supplier will

accmmodate with an itmediate delivery, though not of

an arbitrarily large order, but, more realistically, of

a fixed quantity m which be is able to produee with

relative ease (but at perhaps somewhat h-.'ghar co-t--Pee

below) for im-tediate delivery. The inventory manager

is free to set the values of the Yj, thus tul'.y di=.ining

the states of stock-level emergency. We shi.l! see that

in certain cases there are simple optimal selections of

the yj•



We shall employ the term starting stock at the inventory

point i to designate (i) the initial stock itself if there

is no ordering at i of the additional m units for immediate

delivery (no emergency), or (ii) the initial stock plus m

if there is ordering of the additional m units for immedi-

ate delivery (emergency).

Let the demands in the several inventory periods be

independent and identically distributed, wth distribution

having a continuous density (:

(1) = 0 for
L t 0 and continuous for > 0.

We assume that 9(0+) exists, and we shall denote this limit

more simply by q(0).

We consider a holding cost function, h, and a penalty

cost function, p, applicable in each period. For any parti-

cular period, if y is the starting stock level at the

beginning of this period and • is the demand in this period,

then the holding cost is h(y - ý) and the penalty cost is

p(t - y), theso costs being charged at the end of the

period. Of course, only one of these two costs may be

positive in any particular case, as follows from the first

assumptions on h and p:

=0 for ,-: 0

(1.2) h(i) _0 for q o>

convex for all Ti.

-Q0 for 1 0

(1c3) p(ne 0 for al> 0
convex for all •
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We take a .fixed cost c per unit of the item under con-

sideration. However, this is the regular cost which is

applicable only in the case of orders to be regularly del-

ivered, that is, to be delivered one period later. In the

case of an emergency, the m units that are delivered immedi-

ately will be considered to have a unit cost co, not less

than c and in general greater than c. Thus, in an emergency,

the m immediately delivered units will have the cost Com,

while the cost of the simultaneously placed, regular order,

z, will be cz (the latter cost being incurred at the time

of placement of the order).

We assume that there is no set-up cost. The discount

factor will be denoted by a .

Now, for r = 1, 2,..., n, let

(1.4) F (x,z,;)= conditional expected total cost, dis-

counted to t = n - r + 1, for the

r-petiod interval from t = n - r + 1

to t = n + 1, given that the initial

stock at n - r + 1 is x, that a

regular order for z units is placed

at n - r + 1, and that the demand

in the period [n - r + 1, n - r + 2)

is J; and given, also,that there is an

optimal ordering rule in effect in

[n - r +2, n + lJ, and that-y.

specifies the emergency level at

n - r + 1.



Let

"=00(1.5) fo(x,z;Yi) 4= P,(X,z,ý;-y.) qp(t) dý.

And,finally, let

(1.6) fr(X) = optimal value of f°(xz;7r) among all choices of

(i) the ccnstant -r indepnendt of x, and

(ii) the qunntity z depezdeirt upon x and the

choice of -r.

We have purposely not used the word "minimal" in (1.6) where

the word "optimal" appears, because it is not in general

true that there is a unique minimum for fr(x,z;y r under the

condition (i) in (1.6) which demands that 7r be independent

of x. To formulat this more precisely, let

(1.7) l)(X;r) O mi fo(x,z;yr)z Ž0

and

(1.8) f(2)(x) min f(1)(x;y).

Then, it makes sense to substitute the word "minimal" in (1.6)

only if there is some value of 7r' say -4, such thi=t

(1.9)(2)(x) = 4~l)(x;-yt), all X;

and in this case the value yr will be taken to define the

emergency level, and the optimal cost function fr of (1.6)

wrill be f(2). If there is no such value -Y, then some new
r

convention must be made as to what "optimal" shall maean.



For each r, we consider that such a new convention is at

hand, if necessary, to provide the functions fr of (1.6).

Now, let us examine this question of minimality more

closely by looking at fr as given by the recursion relation.

For r > 1 we have

"cz + I(x - + a frl(X + z - •), x ,(1.i01 +rxz z ; x rY=
cz + comr+ 1 (x +m- )

+ a fr -l(X + m + z - x), - r

where 1 is the function defined by

> 0,

If we set

f_ h(- T )c(r) dý +J P(A T)c() dj, n>O,

(1.12) L(n) = f _ P(• -) P(, ,
j r : ,0:ýT~c(.-) d;, 1 •- o,

then we have, from (1.10),

cz + L(x) +affr.t(x + z -f

(1.13) f 0(xz;TY) t'=0=>

cz + com + L(x + m)

00

+ fr'l(x + m + z -

x Yr.



j - -

Let us set, for r • 1:

(1.14) Gr(z;n)- cz + a fr(n + z -

j=0

Then (1.13) becomes

(1.15) L(x) + Gr_1(z;x), x > 7r

(1.15 m°x +;r =~ m(con+ L(x + m) + Gr_!(z;x+m), x yr.

Let us put

(1.16) Hr(,I) =min Grml(z;m)

and

(1.17) Jr() = L() + H().

Then we have, according to (1.7),

x > 7Y,

r ;r cm + Jr(x + m), x=r.

We see thus that f(l) has a rather special form, cnd we canr
inquire after conditions under which (1.9) holds.

From (1.19) we find that

(1.19) f(2)(x) = min [Jr(x), com + Jr(x + m)].

Hence, if there is a Y1 such that (1.9) holds, we have

(x) g coM + Jr(X + m), x >- 71
(1.20) 0 r r

(X J] )
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Conversely, if thcre is a Yr sati.sfying (1.20), then (1.9)

holds. Thus, the existence of a such that (1.2C) holds

is, in our case, the characteristic condition on the

function Jr in order that optimality in (1.6) be definable

as minimality.

Notice that the function comn + Jr (x + m) is, gco-

metrically, the translate of the function Jr(x) first to the

left by m and then up by the amount com. If the function

jr is U-shaped, the picture may be as follows:

//
'\. / /rX

*i t
* I

4 m

FIG. II
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In this case--thnt is, a situotion of the type dcpictcd in

FIG. Il--the -it indicated in thu figure is the unique number

verifying (1.20).

But observe thot--the nature of the function Jr permitting--

co might be so large that, instend of the situation in FIG. II,

we have the following picgure:

cm0+ Jr(x + m)I /
/ !Jr(X)

com

* I

I I

, I I

FIG. III

This is the situation that

(1.21) Jr(x) __ com + Jr(x + m), all x.
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In this case we may say that (1.20) holds with ' = -y..

And operationally this means that we shall not admit any

emergency situation:--a natural consequence of too large an

emergency cost as compared with penalties.

In subsequent investigations we shall study the question

of convexity of the successive Jr,s, and the existence of

finite values -y, r = 1, 2,... as depicted in FIG. II. For

the present we direct the necessary first attention to the

single-period case, and find thac under natural assumptions

we do have the indicated convexity of Jl and consequent analysis

according to FIG. II or FIG. III.

2. Formulation of the single-period case. As wo have

already said, our intention in fully formuinting and analyzing

the one-period case is to accomplish the prototype of argumenta-

tion that can be expected to be called for indu general n-th

stage discussed above. We shall therefore consider that there

is an initial stock level of x at the beginning of our single-

period, that there is an emergency level 7, as previously

described, to be determined (in particular, it might turn

out that we would want to take y = - co (disallowance of any

emergency situation), and that a regular order for z units

is placed at the beginning of the period for delivery at the

end of the period. To complete the description, we consider

that the z units arriving at the end of the period may be

used to fill any demands still outstanding. But, because such

filling of orders is late, we assume that there is a gain



-12-

function v which does not in general cancel the holding -cost

that is calculated at th.Q cad of the period before arrival

of the order of z units. Finally, we assume that if, after

late filling of demands, there is still some stock left

over, it is sold for salvage, the salvage gain function

being w.

The functions v and w will be supposed concave for

positive arguments; we assume, in fact, the following

properties of v and w and their first and second derivatives:

Sv(7) = 0, 11 5 0,

(2.1) v'(rI) > 0, ij > 0 (v'(0) denotes v,(O+)),

v"(Tr) 5 0, rj -- 0 (v"(0) denotes v"(O+)).

( w(1) = 0, n 24 0,

(2.2) w'(n) 0 0, n =• 0 (w'(O) denotes w,(O+)),

w"(n) f- 0, n 0 (w"(O) denotes vw'( O+)).

Correspondingly, we make the following more detailed assupp-

tions concerning the holding and penalty functions h and p:

Sh(n) = 0, n :5 0

(2.3) h'(n) 0 0, Tj - 0 (h'(O) denotes h,(O+)),

h"(TI) 0 , n • 0 (h"(O) denotes h"(O+)).

Sp(n) 0o, n 0o

(2.4) pI(N) > 0, n j 0 (p,(o) denotes p'(O+)),

p"(r) 0 O, Tj t 0 (p"(0) denotes p'"(O+)).



Our analysis will bu carried out under several as-

sumptions regarding the interrelations batween the functions

v, w, h, and p, and the cost constant c. These are the

following:

(2.5) v' > w'(O), (v" lim v'(I)),

(2.6) v? > c >w,, (w- lir w,(•)),

TI-> 03

(2.7) vI(o) <p,(),

and

(2.8) h' > w', (h", lim h'(q)).
0 Co ll0

Tr~ >00

The significance of condition (2.5) is that there is always

a greater gain in filling demands late, no matter how large

the amount of such demands, than in leaving some of these

demands unfulfilled and taking the salvage value of the

left-over stock instead. This interpretation makes use, of

course, of the fact that the second derivatiLvcs v" and wv arc

nonpositive for all nonnegative arguments, so that we have,

in fact,

TI( ) 0 v" > ;.' '(0) w:(T12 )

(2.9) for all 0l _ 0 and T2 = 0.

The left-hand inequality in (2.6) means--again taking

account of the fact that v'(n) >- v, for all n 0--that every



demand filled late, no matter how large the amount of such

demands, represents a gain in excess of the (regular) purchase

cost of the quantity of item needed to fill that demand. In

other words, even late filling of demands, however many, has

sufficient worth that the purchase cost of the item is no

deterrent.

Out assumptions on the function w imply, of course, that

wt is monotonely nonincreasing from 0 to m. In view of this,

the right-hand inequality in (2.6) means that there is a

level beyond which salvage returns do not make up purchase

cost. Indeed, if the reverse were true there wuuld be gain

to be had in the purely subsidiary operation of purchasing

for resale to salvage.

The relation (2.7)--again together with the consequences

of the second derivative conditions on v and p--asserts

the realistic situation that the gain achieved by filling

demands late does not make up all of the penalty that is paid

for this lateness.

And finally, taking account of the sucond dcrivative

condition on w and h, conditicr.s (2.8) means that there is

no level of stock sufficiently large that beyond this level

salvage returns make up holding costs.

Let y denote the (to be optimally determined) single-

period em-rg•n1cy level, and let ?. stand for •I Then we

have
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~cz + 1 -(x v(min[z,ý xJ)

(2.10) l(x,z, -y) W( + + j Z , x p

-v(riiu [z,t -(x + m)])

w(x + m + z - :- -Y.

Letting fo stand for fo, we thus have

(2.1) o~~z,-Y) cz+ L(x) - V(X,z) - W(x + Zx>

(2.11 f0(~zcy + c~m + L(x + m) - V(x + m, z)

'K-W(x + m + Z, x -: Y

where
x+Z

Fv(a - x)cp(,.)d' + v(z) fJc(~d,
(2.12) V(x,z) X+Z

x + z > 0,

v(z), x + z 0,

and

(2.13) W(X) j W(x- k(d.
0

Define

(2.14~) G(z;x) = cz - V(X,z) - W(x +Z)

then (2.11). becomes
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(2.15)L(x) + G(z;x),

comm+L(x+m) +G(z;x+m), x_< 7.

We put

(2.16) H(x) = min G(z;x)
zO

and

(2.17) J(x) = L(x) + H(x).

Then we hove, letting f(l) stand for fjl),

(21) f~1 )(x;'Y) FJ(x), X > 'y,
c M + J(x + i), x <.

We see that f(l) is of the same form as f(1) for r > 1, as

given by (1.18). Hence, the deliberations in Section 1

subsequent upon formula (1.l) are applicable here in the

single-period case (our present G, H, and J being G., Hl,

and Jl, resp., in the notation of Section 1), and the

problem facing us is the study of the function J with the

goal of determining whether or not there exists a y' such that

J(x) : cor, + J(x + m), x > 7',
(2.19) J(x) t cm + J(x + m), x 5- 7'.

3. Study the minimization of G(z;x. Our first

major task toward understanding the behavior of the function

J is to get at the function H; that is, to study the minimi-

zation of G(z;x) with respect to z - 0.
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We noticc, to begin with, ti-a for each x, V(x,z) and

W(x + z) are pontinuous functions of z . 0. Hence, G(z;x)

is, for each x, a continuous function of z. In fact, G is

differentiable with respect to z, and to calculate this partial

derivative and other dominati%,n further along in our analysis,

we set down the following more explicit (thaix (2.12) and

(2.13)) formulas: SX4-Z

vS - x)TN~;)dt + v~z) p.)~
.Jo x+z

X+Z X + z > Oil X :_ O,

x x-z

x + z > C, x > 0,

v(z), x+ z 5 0,

(X+z

Sw(x + z - x + z > 0,

(3.2) W(x +z)=I

* (O, x+z=•O.

From (3.1)--or,-in fsct, also from (2.12)--we Lave

vt(z) f ()d•, x + z > 0,

(3.3) ' =
6z (z x + z •0

Iw( z), xz O

and from..(3.2) we get (on taking account of the fact that

w(O)= 0)



(3.4) aW(x + z) J , + z *- O)'()d•, x + z > 0,

6z (1O, x + z :C 0.

Hence, we have

r'w
v,(z)j o(P)dw + zG x ~z

(3.5) G =x+z x + z > Ol,

- v,(z), x + z < C.

We see readily that, for each x, 6G/ýz is continuous in

z 0 0. In fact, 6G/6z is differentiable with resprect to z;

but before we go ahead to find 62 G/3z 2 , we first examine the

behavior of OG/Z*z.

From (3.5) ie find
"- v,(0) f (P)d1, - w,(x - ) ( ) ,

0x 0 I~(3.6) ( V) d x 0
z=O+ 

X > 0,

v,(O), x :< 0.

By (2.1) and (2.6) we have

(3.7)v'0•v'•.

Applying this to (3.6) we sec that

(he unton (r/s c for fcch x.

The function (6G/,)z) :0O+ is a condinuous function of x.,



constant and negative for x • 0. Let us examine its derivative

for x > 0:

(3.9) *- (.-_) 1 v,(0)9(x) - w,(o)p(x)
dx L z z=O+ -(

- Iw"(x- x > 0.
0

By (2.1) and (2.5),

(3.10) v,(O) - v! > w,(0)

Combining this with the fact that 9(x) > 0, and remembering

that w" < 0 we see that

(3.11) d 6( ) 1: ~03 X,
dx P ) Z=0-

Hence, (3G/6z)z=O+ is monotone nondecreasing in x. We

find, furthermore, from (3.6),

(3.12) lira (n) = c - w- > 0
x-> oo z=0+

as a consequence of (2.6). It follows that (aG/6Z)z=O+

vanishes for some unique positive value of x or for some

closed interval of positive values of x. Let x0 be this

unique value of x, if it exists, or the lower endpoint of

this interval of values of x, if an interval exists. Then,

x is either the unique"or the minimum number verifying
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(3.13) c - v,(0) r(ý)d -J w'(Xo - A)(e)d. = 0.

XO 0

To sum up what me have found thus far:

aThere is a positive number x. such that the continuous,
monotone nondecreasing Lftctijon (3.6) satisfies

(3.lJa (36 satisfie(3.14) G < O, X < XoO
r( )z-o+ >_ 0, x ?: x.

Z~0+ 0

The number xo is the smallost solution of (3.13).

Let us observe that if 9 is strictly positive for positive

arguments then the inequality sign holds in (3.11). And as

a consequence of this the function (3.6) cannot vanish on an

interval. Hence:

If _(n) > 0 for n > 0, then the number xo of (3.14)

(3.15) is the unique solution of (3.13). and is consequently

the only point at which the function (3.6) vanishos.

Let us now study the socond derivative (obtained from (3.5)):

r- •X+Z

(3.16) X+Z

(126" + F.v,(z) - w, (0)3 Jp(x + z),

x + z > 0,

V"(, x +z <0.
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Since v" and V' are nonpositive, and 9 is nonnegativo and

v'(z) > w'(O) (see (2.9)), we see by (3.16) that 62G/6Z2

is, for each x, nonnegative for all z t 0 for which it is

defined, namely, (i) for all nonnegative z in case x > 0, and

(ii) for all nonnegative z except possibly z - x in case

x < 0. In either case the derivative 6G/6z is therefore

monotone nondecreasing in z. For x < 0 we have

(3.17) lira2 G(-
zt- 7 v"( X), . o

and

(3.l3) lira a2G

-- - v"(- x) + [v'(-x) w,(o)]((o)

X 0.

Thus, by (2.9),

(3.19) i 2G Gim x 0
j= zT-x 3z2

Strict inequality holds here if (O) 0 0, as we- see by

(2.9) and (3.19). We have, as noted, the resul-. that

6G/6z is monotone nondecreasing in z, fr ei:ch x. For

x ?-: xO (see ( 3 .14)) this means immediately -tiat G(z,x) has a

minimum with respect to z and it takez cn this minirmum value

at z = 0. In particular, for in x , xo such that (,GbZ) z=)0+ 0,

the minimum of G is taken on only at z = 0. He-ce, under the

condition of (3.15), z = 0 is the unique minimum point of G

for each z > xo. For x = xo we see by (3.16) that
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[ •2G + = - v()•••d

(3.20) E( )G z--Io _fo (
bz' z:=O+J == 0 xo

x w " o 0 It( o
fw ( - j~(pO)dP. + [v'(0) - wI(0)]cP(x0)

0

and this is strictly positive under the condition that T(n) > 0

for > 0. Hence, under the condition of (3.15) it is true

also for x = x0 that the minimum of G is taken on only at

z =0.

We must now examine the minimization of G, with respect

to z, for values of x < x.. For such a value of x, G(z;x)

starts out at z = 0 with a negative slope (see (3.14)). This

slope is monotone nondecreasing, by virtue of the nonnegativity

of 62 G/6z 2 . We ask now if this slope eventually becomes

positive. By (3.5) we have

(3.21) lira G = c - w' > 0.
Z-*. c0 Z

Thus, the answer to our question is in the affirmative; in

fact, 3G/az tends to the same positive limit in z -* - for

every x. Therefore, in the case of concern to us, namely,

x 4 Xo, the derivative 6G/3z vanishes at some unique positive

value of z or for all values of z in some pcsitive interval,

and at this unique point, or at all the points of this interval,

as the rans may be, the function C takes on its minimum value

in z. Now, by (2.6) and the monotone nonincreasing character
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of v1, we see in (3.5) that ýG/6z < 0 for every z such that

x + z g 0. It follows that the minimizing value or values

of z must be such that x + z > 0. Then, by (3.16) we see that

under the condition of (3.15), namely, 9(n) > 0 for TI 0,

the second derivative a2G/6z2 is strictly positive at a

minimizing z. Consequently, there is a unique minimizing z

under this condition. And this minimizing z is the value

that causes the vanishing of tlr first expression in (3.5).

Let us now gather together our results on the minimization

of G:

Proposition I. For each x ? x , G(zzx) is monotone,

nondecreasing, convex in z ? 0. Its uminimum is thereforu

taken on either at z = 0 only or at all points of a closed

interval with left end-point z -- 0. if p(n) > 0 for 'Q > 0,

then z = 0 is tho unique mini u point.

For each x < xo G(z:x) is first decreasing and then

increasing as z runs from 0 to c. and it is convex. Its

minimum is taken on either at a vunioue positive point or at

every point of a closed nositivoe interval. Such a minimatu

point z satisfies x + z > C and is a root of thp. equation
x+"

X+Z

If c(yl) > 0 for i > O then therq is a uaie mninimurjpoint

for G(zlx), and this point is tac uniqe ro.i,'tlon of L._22_.

From this stage on we shall work undo:* the following

assumption, which has been shown above to be important for

uniqueness of the policy function:



(3.23) ASSUMPTION: 9(n) > 0 for j> 0.

With this assumption we may now define

(3.24) z*(x) '4f the unique value of z at which G(z.x) takes

on its minimum value.

From proposition I we have:

(•,for _ o

(3.25) z*(x) = f x ?-

the unique solution of (3.22), for x < xo,

and the additional fact that

(3.26) x + z*(x) > 0 for all x.

4. Sdfthefunctionh. We have

(4.1) H(x) = min G(z;x) = G(z*(x); x),

z? 0

and we shall examine the first and second derivatives of H.

In general,

ýG + 6G dz*
(4.2) H,(x) ( U )z=z(x) + ( )z=:z*(x) W,

fo_ x 4 X0 (possibly).

But we have

6( ) * = 0 for x <
7z =Z*(X)

dz_** -0 for x >xo0 .
dX
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Hence, (4.2) reduces to

(4.4) H,()I (•)(x) 6G x xo.

From (2.14),

6G 6V •Wýx + z)
(4.5) 6 -U)

By virtue of (13.26) w% see that the first two expressions in

(3.1) and the first expression in (3.2) are the pertinent

ones for evalutation of the terms on the right-hand side

of (4.5). We find

Sx+z x+z
F0,-(- x)•(p()d,- /0w(x + z0.

(4.6) G/x n (. iO

for x+z>. T vu,(t- x)cp(n)d t i w,(x+z- namely,

x ý xo, may be discardOd.

We may obtain "explicit" expressions for H f(x) by

substituting z*(x) for z in (4.6). If we do this and

avail ourselves of (3.22), we obtain:
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x+z*(x)

0 x)I(~t + vl(z*(x) (p)d• - c,
x-+z (x)

(4.7) H,(x) =x+z*(x) x 5 0,

f v,( - x)}(P.)d + v,(z*(x))r 0ý(:}d - c,X x+z•*(x)

0 ' X < O

Xw,(x - t)(d• x > x
0 0

From the third expression here we get i•mediately

(4.9) lira H'(x) ,-
X--- cc

To gain information about the behavior of H, as x-> -

we must study z* a little more closely. From (3.22) we

find: x+z*(x)

[, z [v,(z*(x))-w,(o)]L(x+z*(x))-w"(x+z*(x)- ) (p(

Pv, ( xz*(x) -, ( xdt-v" ((,(}] },xz)}l 9jd

x+Z*(x)

ýor x < x

We see that, for x < xo, dz*/dx is ncgative and bounded by I

in absolute value:

(4.10) - 1 dz*

dx

Hence, z* is monotone decreasing in x. From (4.10) we get
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dl) [x + z*(x)i o,(4.11) d

and this is valid for all x. From (4.9) we see also that

if v"(r) < 0 for n > 0, then the strict inequality signs

hold in (4.10) and (4.11). The result (4.11) tells us that

x + z*(x) is monotone nondecreasing. Let us define

(4.12) p lira + z*(x)j.
X--> - CO

By (3.26) we have that p 0 0. The datemining equation for

p is obtained from (3.22) by letting x -> - m, and noting

that in this case z*(x) -- + co, by virtue of (3.26). wo got:

(4.13) c - V C / ()dý - J w,(p - P)q( )dý d 0.Vp 0

Since c > 0 we see that, in fact, p > 0.

If we now consider x-• - oo in (4.7) we get

(4.14) lim H,(x) = vi - c.0O

From (2.6) and the fact that w, '- 0 we have then:CO --

(4.15) Jlim H'(x) > 0 > lim H'(x).

HT(x) actually changes sign as x runs fzio - c to + o. In

fact there is a sign change between -= and xo, as we see from

the fact that

(4.16) HI(xo) - f , (xo - P)c(ý)d•. 0.
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We now calculate the second derivativu of H; from

(4.7) we get:

(4.17) H"(x) v,(z*(x))-w,(oj]q(.Xz*(X))

x+z*(x)

x- z(x)

-f v"(-x) ()d

for x< 0,
and
(4.1ý) H"(x) = y[vz*(x))-w,(O)]•,(x+z*(x))•

x+z*(x) dz*-,, W" x~z(x),•j•( )d• (I + )CT

x+Z*(x)
-v,(o)q(x) - f v"( ) - d

for 0 < x < xo,

and

(4. 19) H"(x) =- w,(O)q(x) - f" (x-

for x > x.

The information gathered above concerning the function

H will suffice to investigate the function J.
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5. fthefuncionJx. We have

(5.1) J(x) = L(x) + H(x)

and r
J.ix - &)cp(j)dý- + p(ý - x)cp(ý)d&, x •0,

(5.2) L(x) = Xx

S- x)- (ý)d:, x :5 0.

H and L are continuous functions, and therefore J is

continuous. From (5.2) we calculate:
f (x - ý)p(ý.)d-r Dp'(E - x)•(p)d&, x > 0,

(5.3) L,(x) =
p,(ý - x).r(A)d., x ( 0.

From this we see that also L, is continuous. We have

already seen that H, is continuous. Hence, J, is con-

tinuous.

Differentiating once again, we get

x -.

-[h,1 (0)+p, (0)1 ((x) +0 •h" (x- •) (p )d'

P"(t- X)•(1)d6, x < 0.

Combining this with (4.17)--(4.19) we get



(5.5) J"(x) C Vl(Z*(x))-wI(O)Icp(x+z (X))

v'x i-z * ( x) - d+

- v"(e-x)cp(i.)d4 + F' P"(J-x)q)(ý)d^

f or x -<0

and

(5.6) J"(x) = ffv(z*(x))-ww(O)I9c(x+z*(X)-

X+Z*(x) dz*

X+Z*( x)-j v"(ý-x)cp(ý)dt +[h()pO)v()q)

+ X

for < x <x

and

(5.7) J"(x) = -/'(x-f)q(P)c.1 +Fht(O) +pi(O)-wi(0)]T(X)
'Jo

for x >x..

We see irmiddifltely, by (2.1), (2.2), (2.4), (2.9) a~nd

(41.11), that ill is nonnegative for x < 0. Taking account as

well of (2.3) and (2.7), we sea that J" is strictly positive
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for 0 < x < xo. And by virtue of these also, noting that

(5.8) p,(0) >v,'(0) > w,(O),

we see that, finally, J" is strictly positive for x > xo.

Hence, we have the result that J is a convex function.

Let

(5.9) P-" ==. lim P,(T.

(p" may be infinite.) From (5.3) we see that

(5.10) lim LI(x) pt-0
x-.P -o

Combining this with (4.14) wu have

(5.11) lim J,(x) = v, - p? - c.
X--• -0o

From the properties of v and p it follows by (2.7) that

(5.12) v, 4 p-.I

Hence,

(5.13) lim J,(x) 4 0.
X--> - 0

Again from (5.3),

(5.14) lim LI(x) = h,.

Combining this with (4..8), we have

(5.15) lim JI(x) = hi - w'.
X->00
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Thus, by (2.8),

(5.16) lim J,(x) > 0.
X->-CO

Hence, t!:e function J is U-shaped.

Now we are at the point of investigating J with regard to

the question centering around (2.19). For this purpose we state

state--without proof--the following

Lemma I. Let gx) be defined for all x e(- -o, o), and

let it have the properties

lim g'(x) c 0 < urn g'(x)
X--CO->+

(5.17) g"(x) • 0

Furthermore, let a and p be positive numbers,_and let

(5.18) *(x) = -(x + a) + •.

Then. the graph. of the funztion * is eitber entirely above

the_•rahhof g, the two Rraphsj~aving no point in con-bon. or

tbhe ,reph of 7' cuts that of g in just one vrot

If the groph of * fails to cut the krc~h of g for some

posit ive, then

(5.19) 1rn g,(x) >

Conversely. if (5.19) holds and g(x) has an asymptote

as x -> --, then for all sufficiently larae p the grooh of

fails to cut the graphof g.
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We apply this lemma to our function J. From (5.11) me have ...

that sine vi is finite, the question of whether or not (5.19)

of the lezmm obtains in our case depends on pl. It follows

immediately from the lemma, then, that, whatever be m and co)

there is a y' satisfying (2.19) if pt .

On the other hand, if p, < w and J(x) has an asymptote as

x ->-W, then the graphs of J(x) and J(x + m) + com will inter-

sect for all sufficiently small positive values of cam, and

will fail to intersect for all values of cam greater than or

equal to the pertinent critical value. This critical value

depends only on the slope of the asymptote of J, which is given

by (5.11). However, for completeness, we shall determine

the adymptote of J fully explicitly.

To investigate this asymptote we shall make the convenient

(and reasonable) assumption:

(5.20) ASSUMPTION: p -f •(t)dC . -;

0

that is, that the demand variable has finite expectation.

If g is a function which has an asymptote as x . -C,

then the vertical intercept of the asymptote is given by

(5.21) urn [&(x) - xg'(x)].
X-0 -

The same formula applies for x -9 +Ca if there is an

asymptote in this direction. In Our present case, wo shall

see that H has an asymptote as x -.- a provided the function

v has one as x -s +a, and that L has one as x ->-cc provided



p does as x--. +w. J is the sum of L and H, and the

formula (5.21) is linear. Hence the vertical intercept of

the asymptote of J is the sum of those for L and H. Let

•L and 1H denote the latter tuo vertical intercepts,

respectively. We first calculate XL"

We suppose that the function p has an asymptote cs

x -• •. Lot N be the vertical intercept of this asymptote.

Applying (5.21) to (5.2) and (5.3) we have:

(5.22) xL - Urnj- p(I;-x)cPUC)dý + xf )~x~ d1
X -® 9 ..O2' 0

L I f_ ( -x) - (-x)p,(-x)

+ plp(•-x)j cp(!)d•

=f (Xp + p'3 j (t,)de

and so

(5.23) NL = N + pe 4.L

Next uu calculate Ni. Utilizing (2.14), (3.1), (3.2)

and (4.7), w have, for x -- 0,



- 35-

(5.2i4) 11(x) -xH'(X) - cz*(x) -

x+Z*(x)

xVz*Cx) + :dývz*(x) -

~.0
x~Xz* ( X

- Wx +f Z v (-X)()d -t,) ((t) x),P,(d

xx~z (x)

+ cx

x+Z*(x)
=C(x+Z*(x)) -J [v(e-x)+xvt (ý-x)] q(ý)dt

0

- v(z*(x)) + tz*x)

x+Z*( x)

x+z*(X)

-10 W(x + z*(X)-

X+sZ*(x)
-c.(X+z*(X))-r

X+z*(X)0
-f tvi(t-x)cp(F)dt

- 11v(z*(x)) - z*(x)vf(z*(x))1 '] (~d
x+Z*(x)-

-(x + z*(x))

X+Z*(x) +(X

I1 w(x + z*(x) - (~tdt



In this last form we see that every term has a limit, provided

the function v(q) has an asymptota as -I o> W. e assume that

this is so, and we denote the vertical intercept of this

asymptote by Nv. Then, taking limits, wc get:

(5.25) --H -P - , '(q)d• - "

p pýd,

or, simplifying,

(5.26) NHI= Nv 0C jJ~~d - 0"Pq()~-wpc()~p •OJ

And now comiining (5.23) and (5.26) we have

(5.27) •'a (Np - xv) + p" • .•
U 0

P fo,+ cp - p f'•(•)d•- •fw(p - )(),
•Jp

Thus, finally, we have, by (5.l1) and w-ith X as given by

(5.27), the following equation for the asymptote of J as

X -ý- -00

(5.28) y - (v- - pt - c)x + NJ.

Now, from (5.28) we are able to calculate that the

asymptote of J(% + m) is

(5.29) Y - (v - p"- c) x + [m(v'-pI-c) + NJ]
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And we see that the line (5.29) is at a vertical distance

(5.30) m(c + p- - v-)

below the line (5.28). (Notice thatthis quantity (5.30) does

not depend on X., and could have been reasoned to without

explicit knowledge of X..)

The quantity (5.30) is the critical value to which we

referred at the beginning of our discussion of asymptote of

J. Tbus, if cam is less than (5.30), then the graphs of J(x)

and J(x + m) + cam will intersect; on the other hand, if

cam is greater than or equal to (5.30), then these two graphs

will not intersect. In the case of intersection, the abscissa

of the point of intersection is the number yt fulfilling (2.19).

Thus, we may state:

Proposition II. If (in the case of existence of

asymptotes)

(3.31) co C c + Pt - Vt

then there is a number y' such that (2.19) holds. This Yt is

the abscissa of the unique point of intersection of the graphs

o1 J(x) and J(x + m) + com.
IL

(5.32) co > C + p1 - Vt

then the graph of J(x + m) + cam lies everyWhere above the

graph of J(x), no_eme-rgency level is to be defined.



We state also formally the ndditional result noted above:

Proposition III. If p = o, then there is g y' such

that (2.19) holds. Again, this number is the abscissa of

the unique point of intersection of the graphs of J(x) and

J(x + m) + com.
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